X-Ray Study of the PbCl_{2-x}l_x and PbBr_{2-x}l_x Systems

L. H. BRIXNER, H.-Y. CHEN, AND C. M. FORIS

Central Research and Development Department,* E. I. du Pont de Nemours and Company Experimental Station, Wilmington, Delaware 19898

Received June 26, 1981; in final form August 13, 1981

Compounds from the systems $PbCl_2/PbI_2$ and $PbBr_2/PbI_2$ were examined by x-ray diffraction. The lattice parameters of these phases are presented and the refined crystal structures of the intermediate compounds PbClI and PbBr_1.2I_{0.8} are reported. Both structures have *Pbnm* symmetry, are isostructural with PbCl₂, and have the different halogens ordered in the two Cl sites. Phase studies showed that PbCl₂ and PbClI have practically no mutual solubility, while PbBr₂ and PbBr_{1.2}I_{0.8} have appreciable solubility ranges, particularly for PbBr₂-rich concentrations. At least 17% Br is present in the I site of PbBr_{1.2}I_{0.8}. Nevertheless, it is a distinct phase with miscibility gaps toward PbBr₂ and PbI₂. This behavior is explained by the size disparity between the halogens. The intermediate phases do not form solid solutions with hexagonal PbI₂.

Introduction

The optical properties of $PbCl_2(1)$, $PbBr_2(2)$, and $PbI_2(3)$ have been described, but little structural information is available for mixed phases of the lead halides. Hirsch (4) investigated the $PbBr_2/PbI_2$ system and described $Pb_3Br_6I_4$ and $Pb_5Br_8I_2$. Heidrich *et al.* (5) also did optical and structual studies on the $PbI_{2x}Br_{2(1-x)}$ system. No study appears to exist for the $PbCl_2/PbI_2$ system.

The structures of PbCl₂ and PbBr₂ (6) are known, and Mitchell (7) described the polytypism of PbI₂. The mixed halide PbFCl (8), which has a structure type P4/nmmexhibited by other compounds (9-11), has also been investigated.

This paper describes the investigation of the phase diagrams of the $PbCl_{2-x}I_x$ and $PbBr_{2-x}I_x$ systems and also presents structural evidence to support the conclusion that PbCII and PbBr_{1,2}I_{0,8} are two distinct

0022-4596/81/150336-08\$02.00/0 Copyright © 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. compounds isotypical with $PbCl_2$. The existence of $Pb_5Br_8I_2$ could not be substantiated.

Experimental

Synthesis

All compounds were prepared by the interaction of constituent components via melting in evacuated quartz ampoules. Single crystals needed for the structure study were easily obtained by slow cooling (2 to 5 deg/hr) the compositions from above the melting points. High-purity PbCl₂ and PbBr₂ (Fisher certified) were used. PbI₂ was prepared by precipitation from a Pb(NO₃)₂ (Mallinckrodt) solution with KI (Fisher certified).

Powder Diffraction

Powder patterns were obtained with a Guinier-Hägg focusing camera (r = 40 mm). The radiation was monochromatic

^{*} Contribution No. 2932.

 $CuK\alpha_1$ ($\lambda = 1.5405$ Å) and Si (a = 5.4305 Å) was an internal standard. Line positions on the films were determined with a David Mann film reader: the intensities were determined by oscilloscopic comparison of the film density with the strongest line of the pattern. The lattice parameters were refined by a least-squares procedure. The figures of merit (12a, 12b) for PbClI were $F_{30} = 59 \ (0.010, \ 50) \ \text{and} \ M_{20} = 52.$ For $PbBr_{1.2}I_{0.8}$, the values were $F_{40} = 17 (0.036)$, 64) and $M_{20} = 12$. The higher $|\overline{\Delta 2\theta}|$ (0.036°) for the powder pattern of PbBr_{1.2}I_{0.8} can be attributed to a sample which contained material with a small range in composition due to the mixing of Br and I at one halogen site.

Single-Crystal Data and Structure Refinements

Precession patterns of single crystals were obtained with Mo radiation. Intensity data were collected with a Syntex P3 diffractometer (graphite monochrometer, MoK α radiation $\lambda = 0.7107$ Å) by using an ω -scan technique. In both cases, the nonextinction conditions, (h0l): h + l = 2n and (0kl): k = 2n, and second-harmonic generation tests (13) confirmed the centric space group Pbnm (cab form of Pnma (62)).

PbClI. A total of 729 reflections were recorded for $2\theta \le 65^\circ$ in one quadrant; there were 486 reflections with $F_0^2 > 2\sigma (F_0^2)$. The crystal had a rectangular shape $(0.092 \times$ 0.033×0.073 mm), and the variation of the normalized transmission factor ranged from 36 to 100%. Empirical corrections for absorption were obtained from Ψ -scan data for four reflections at various 2θ angles. After absorption and Lorentz-polarization corrections were applied, the data were refined with computer programs (locally modified) supplied by the Enraf-Nonius Corp. (14). The final R-factors were R =0.063 and $R_w = 0.082$. For R_w , the data were weighted according to $1/\sigma^2$ (F_o) with an "ignorance factor" of 0.02 (15). Attempts to refine the multiplicity factors failed to detect any deviation from complete occupancy at all sites. Thus, Cl and I are completely ordered.

 $PbBr_{1,2}I_{0,8}$. Intensity data were collected in two quadrants for $2\theta \leq 55^{\circ}$. The crystal had the shape of a thin plate, 0.150×0.075 \times 0.030 mm, and the variation of the normalized transmission factors ranged from 26 to 100%. Empirical absorption corrections were applied by using Ψ -scan data for three reflections at various 2θ angles. After absorption and Lorentz-polarization corrections were made, the data were averaged to yield 659 independent reflections (501 reflections with $F_0^2 > 2\sigma(F_0^2)$. The structure was refined to R = 0.035 and R_w = 0.035, with 21 variables including the multiplicity factor for I. The value of the thermal parameter for the I atoms was found to be unusually high and the peak in the Fourier map was significantly lower than expected for I. The refined multiplicity factor for I indicated that the electron density at this site was equivalent to 94% of an I atom. This value indicated 17% of the sites were occupied by Br instead of I. The crystallographic composition of PbBr $(Br_{0.17}I_{0.83})$ is in good agreement with the solid-state preparation of $PbBr_{1,2}I_{0,8}$ and the assignment of $Pb_5Br_6I_4$ by Hirsch (4).

Results and Discussion

 $PbCl_2/PbI_2$ phase study. Contrary to Mitchell (6) who found the P3m 2H type of PbI_2 to be the most common polytype, we found the $P6_{3}mc$ 4H type to be the most prevalent. This discrepancy is probably due to the fact that Mitchell (6) used a silica-gel method, whereas most of our samples were prepared from melts. Other samples prepared by precipitation or sublimation also crystallized in the 4H type. High-pressure treatment (59 kbar, 200°C, 1hr) of 4H-type material did not convert it into the 2H type. We, therefore, conclude that the 4H type is

LATTICE PARAMETERS AND CELL VOLUMES FOR THE POCI _{2-x} 1 _x COMPOUNDS							
Composition	x	a (Å)	<i>b</i> (Å)	с (Å)	V (ų)	Space group	Comments
PbCl ₂	0	7.605	9.027	4.520	310.3	Pnamª	single phase
PbCl _{1.98} I _{0.02}	0.02	7.625	9.048	4.537	313.0	Pnam	single phase
PbCl _{1.95} I _{0.05}	0.05	7.625	9.050	4.538	313.2	_	two phase
PbCl _{1.02} I _{0.98}	0.98	8.179	9.599	4.577	359.3	_	two phase
PbClI	1.0	8.187	9.654	4.593	363.0	Pnam	single phase
PbCl _{0.98} I _{1.02}	1.02	8.203	9.667	4.590	363.9	_	two phase
PbCl _{0.05} I _{1.95}	1.95	4.530		13.909	247.2		two phase
PbCl _{0.02} I _{1.98}	1.98	4.523		13.903	246.3	P63mc	single phase
PbI ₂	2.00	4.556		13.973	251.2	P63 mc	single phase

TABLE I	
LATTICE PARAMETERS AND CELL VOLUMES FOR THE	PbCla-zlz Compound

^a Space group *Pnam* is the *acb* form of *Pnma*(62).

thermodynamically the most stable polytype. The structure types and lattice constants for various compositions are summarized in Table I. There is very little solid solubility near the end members $PbCl_2$ and PbI_2 . At the 1: 1 mole ratio, a distinct PbClIcomposition can be observed. The phase behavior and the constancy of lattice parameters show that this phase has no appreciable solubility in either $PbCl_2$ or PbI_2 , even though it is isostructural with $PbCl_2$. This is due to the size disparity between the Cl^- and I^- ions.

 $PbBr_2/PbI_2$ phase study. The phase behavior of this system is similar to its chlo-

ride counterpart described above. Table II lists the structure types and the lattice constants for various compositions. The existence of a distinct phase near the 1:1 mole ratio is also quite apparent. The composition of this phase is approximately PbBr_{1.2}I_{0.8}, rather than PbBrI, and could be the Pb₅Br₆I₄ phase reported by Hirsch (4). However, no evidence for the existence of Pb₅Br₈I₂ was found. This is undoubtedly due to the fact that the present study used high-temperature preparative techniques, while Hirsch (4) prepared Pb₅Br₈I₂ from aqueous solution and found it to be metastable.

	$2 - x I_x$ Compounds						
Composition	x	a (Å)	b (Å)	с (Å)	V (ų)	Space group	Comment
PbBr ₂	0	8.038	9.518	4.717	360.9	Pnam	single phase
PbBr _{1.9} I _{0.1}	0.1	8.096	9.568	4.744	367.5	Pnam	single phase
PbBr _{1.8} I _{0.2}	0.2	8.128	9.605	4.755	371.0	Pnam	single phase
PbBr _{1.7} I _{0.3}	0.3	8.157	9.637	4.762	374.0	Pnam	single phase
PbBr _{1.6} I _{0.4}	0.4	8.160	9.636	4.768	374.9	_	two phase
PbBr _{1.3} I _{0.7}	0.7	8.622	10.429	4.416	397.0	_	two phase
PbBr _{1,2} I _{0.8}	0.8	8.627	10.446	4.420	398.3	Pnam	single phase
PbBr _{1.0} I _{1.0}	1.0	8.642	10.449	4.432	400.3	—	two phase
PbBr _{0.2} I _{1.8}	1.8	4.499		13.840	242.6	_	two phase
PbBr _{0.1} I _{1.0}	1.9	4.497		13.832	242.2	P6 ₃ mc	single phase
PbI₂	2.0	4.556	—	13.973	251.2	P6 ₃ mc	single phase

 TABLE II

 LATTICE PARAMETERS AND CELL VOLUMES FOR THE PbBr2-71, COMPOUNDS

TABLE	11
-------	----

						•		
x	у	Z	B (1,1)	\$ (2,2)	\$ (3,3)	β (1,2)	β (1,3)	β(2,3)
PbClI: $a =$	9.669(10) Å,	b = 8.2	200(3) Å, $c =$	4.605(2) Å, V	/ = 365.1(4)	Å ³ ; R-factor =	= 0.063	
0.1240(2)	0.2082(2)	0.25	0.0093(3)	0.0114(2)	0.0355(8)	-0.0036(4)	0	0
0.0596(9)	0.859(1)	0.25	0.0044(7)	0.005(1)	0.031(4)	0.000(2)	0	0
0.8305(2)	0.4703(3)	0.25	0.0039(2)	0.0054(2)	0.0253(9)	0.0002(4)	0	0
PbBrI: a ≠	= 10.452(1) Å.	b = 8.6	639(1) Å, $c =$	4.427(1) Å,	V = 399.7(2)	Å ³ , <i>R</i> -factor	= 0.035	
0.15804(8)	0.16220(9)	0.25	0.00699(7)	0.00893(8)	0.0321(3)	0.0012(2)	0	0
0.0534(1)	0.8414(2)	0.25	0.0036(1)	0.0051(2)	0.0254(7)	-0.0001(3)	0	0
0.8286(1)	0.5014(1)	0.25	0.0061(1)	0.0061(1)	0.0213(4)	-0.0013(2)	0	0
	PbCl ₂ : a	= 9.027	7 Å, b = 7.60	5 Å, c = 4.52	20 Å, V = 31	10.3 ų		
0.0956	0.2617	0.25						
0.0742	0.8610	0.25						
0.837	0.4768	0.25						
	x PbClI: a = 0.1240(2) 0.0596(9) 0.8305(2) PbBrI: a = 0.15804(8) 0.0534(1) 0.8286(1) 0.0956 0.0742 0.837	xyPbClI: $a = 9.669(10)$ Å,0.1240(2)0.2082(2)0.0596(9)0.859(1)0.8305(2)0.4703(3)PbBrI: $a = 10.452(1)$ Å,0.15804(8)0.16220(9)0.0534(1)0.8414(2)0.8286(1)0.5014(1)PbCl2: a 0.09560.26170.07420.86100.8370.4768	xyzPbClI: $a = 9.669(10)$ Å, $b = 8.2$ 0.1240(2)0.2082(2)0.2596(9)0.859(1)0.250.8305(2)0.4703(3)0.25PbBrI: $a = 10.452(1)$ Å, $b = 8$.0.15804(8)0.16220(9)0.250.8286(1)0.5014(1)0.250.09560.26170.250.07420.86100.250.8370.47680.25	xyz $\beta(1,1)$ PbClI: $a = 9.669(10)$ Å, $b = 8.200(3)$ Å, $c =$ 0.1240(2)0.2082(2)0.250.0093(3)0.0596(9)0.859(1)0.250.0044(7)0.8305(2)0.4703(3)0.250.0039(2)PbBrI: $a = 10.452(1)$ Å, $b = 8.639(1)$ Å, $c =$ 0.15804(8)0.16220(9)0.250.0534(1)0.8414(2)0.250.00699(7)0.0534(1)0.5014(1)0.250.0061(1)PbCl_2: $a = 9.027$ Å, $b = 7.60$ 0.09560.26170.250.07420.86100.250.8370.47680.25	xyz $\beta(1,1)$ $\beta(2,2)$ PbClI: $a = 9.669(10)$ Å, $b = 8.200(3)$ Å, $c = 4.605(2)$ Å, V0.1240(2)0.2082(2)0.250.0093(3)0.0114(2)0.0596(9)0.859(1)0.250.0044(7)0.005(1)0.8305(2)0.4703(3)0.250.0039(2)0.0054(2)PbBrI: $a = 10.452(1)$ Å, $b = 8.639(1)$ Å, $c = 4.427(1)$ Å,0.15804(8)0.16220(9)0.250.0036(1)0.0051(2)0.8286(1)0.5014(1)0.250.0061(1)0.0061(1)PbCl ₂ : $a = 9.027$ Å, $b = 7.605$ Å, $c = 4.52$ 0.09560.26170.250.2610.250.07420.86100.250.250.8370.4768	xyz $\beta(1,1)$ $\beta(2,2)$ $\beta(3,3)$ PbClI: $a = 9.669(10)$ Å, $b = 8.200(3)$ Å, $c = 4.605(2)$ Å, $V = 365.1(4)$ 0.1240(2)0.2082(2)0.250.0093(3)0.0114(2)0.0355(8)0.0596(9)0.859(1)0.250.0044(7)0.005(1)0.031(4)0.8305(2)0.4703(3)0.250.0039(2)0.0054(2)0.0253(9)PbBrI: $a = 10.452(1)$ Å, $b = 8.639(1)$ Å, $c = 4.427(1)$ Å, $V = 399.7(2)$ 0.15804(8)0.16220(9)0.250.00699(7)0.00893(8)0.0321(3)0.0534(1)0.8414(2)0.250.0061(1)0.0051(2)0.0254(7)0.8286(1)0.5014(1)0.250.0061(1)0.0061(1)0.0213(4)PbCl ₂ : $a = 9.027$ Å, $b = 7.605$ Å, $c = 4.520$ Å, $V = 31$ 0.09560.26170.250.2550.03370.47680.25	xyz $\beta(1,1)$ $\beta(2,2)$ $\beta(3,3)$ $\beta(1,2)$ PbClI: $a = 9.669(10)$ Å, $b = 8.200(3)$ Å, $c = 4.605(2)$ Å, $V = 365.1(4)$ Å ³ ; R-factor =0.1240(2)0.2082(2)0.250.0093(3)0.0114(2)0.0355(8) $-0.0036(4)$ 0.0596(9)0.859(1)0.250.0044(7)0.005(1)0.031(4)0.000(2)0.8305(2)0.4703(3)0.250.0039(2)0.0054(2)0.0253(9)0.0002(4)PbBrI: $a = 10.452(1)$ Å, $b = 8.639(1)$ Å, $c = 4.427(1)$ Å, $V = 399.7(2)$ Å ³ , R-factor0.15804(8)0.16220(9)0.250.00699(7)0.00893(8)0.0321(3)0.0012(2)0.0534(1)0.8414(2)0.250.0061(1)0.0051(2)0.0254(7) $-0.0001(3)$ 0.8286(1)0.5014(1)0.250.0061(1)0.0061(1)0.0213(4) $-0.0013(2)$ PbCl ₂ : $a = 9.027$ Å, $b = 7.605$ Å, $c = 4.520$ Å, $V = 310.3$ Å ³ 0.09560.26170.250.0351(2)0.253(7) $-0.0013(2)$ DbCl ₂ : $a = 9.027$ Å, $b = 7.605$ Å, $c = 4.520$ Å, $V = 310.3$ Å ³	xyz $\beta(1,1)$ $\beta(2,2)$ $\beta(3,3)$ $\beta(1,2)$ $\beta(1,3)$ PbClI: $a = 9.669(10)$ Å, $b = 8.200(3)$ Å, $c = 4.605(2)$ Å, $V = 365.1(4)$ Å ³ ; R-factor = 0.0630.1240(2)0.2082(2)0.250.0093(3)0.0114(2)0.0355(8) $-0.0036(4)$ 00.0596(9)0.859(1)0.250.0044(7)0.005(1)0.031(4)0.000(2)00.859(1)0.250.0039(2)0.0054(2)0.0253(9)0.0002(4)0PbBrI: $a = 10.452(1)$ Å, $b = 8.639(1)$ Å, $c = 4.427(1)$ Å, $V = 399.7(2)$ Å ³ , R-factor = 0.0350.15804(8)0.16220(9)0.250.00699(7)0.00893(8)0.0321(3)0.0012(2)00.0534(1)0.8414(2)0.250.0036(1)0.0051(2)0.0254(7)-0.0001(3)00.8286(1)0.5014(1)0.250.0061(1)0.0061(1)0.0213(4)-0.0013(2)0PbCl ₂ : $a = 9.027$ Å, $b = 7.605$ Å, $c = 4.520$ Å, $V = 310.3$ Å ³ 0.09560.26170.250.07420.86100.250.250.8370.47680.250.25

Positional and Thermal Parameters of $PbX_1X_2^a$

^a All atoms on the mirror planes $x, y, \frac{1}{2}$ of *Pbnm*.

^b Multiplicity factor = 0.472(1), equivalent to 0.418 I + 0.082 Br.

The completely ordered phase PbBrI does not exist. The disordering of Br and I appears to occur only at the I site, as shown by structure data for the intermediate phase.

Table III lists the positional and thermal parameters for PbClI, PbBr($Br_{0.17}I_{0.83}$), and PbCl₂ (16). The indexed powder patterns are reported in Tables IV and V. The struc-

tures of these compounds projected along the short c axes are shown in Figs. 1, 2, and 3. The interatomic distances are listed in Table VI.

Structures of PbClI and PbBr(Br_{0.17}I_{0.83})

Crystallographically, these two mixed dihalides as well as PbBr₂ have the PbCl₂type structure. PbCl₂ has the centric *Pbnm*

FIG. 1. c-Axis projection of the PbCl₂ structure.

TABLE IV X-RAY POWDER DIFFRACTION DATA FOR PbBr1 2In.8

59.310

60.167

60.617

61.046

10

10

5

20

441

521

412

261

1.5567

1.5366

1.5263

1.5166

TABLE V X-RAY POWDER DIFFRACTION DATA FOR PbCll

20	I/I_1	hkl	$d_{\rm obs}$	d_{calc}	20	I/I_1	hkl	$d_{\rm obs}$	d_{calc}		
13 473	30	110	6.5661	6.6517	18.340	5	020	4.8333	4.8268		
17.107	40	020	5.1788	5.2228	01.055	80	120	4.1572	4.1580		
19.980	70	120	4.4402	4.4678	21.355	80	011		4.1476		
21.915	55	011	4.0522	4.0702	21.694	10	200	4.0930	4.0935		
22.381	60	210	3.9688	3.9869	23.584	40	210	3.7691	3.7687		
24.215	10	111	3.6723	3.6811	24.031	90	111	3.7000	3.6999		
26.841	10	220	3.3187	3.3258	28.933	100	121	3.0833	3.0825		
27 665	5	130	3.2217	3.2288	29.791	20	130	2.9964	2.9948		
28.948	40	201	3.0817	2.0869	30.653	95	211	2.9141	2.9135		
30 204	100	211	2.9564	2.9603	33.992	60	031	2.6351	2.6355		
32 296	90	310	2.7695	2.7725	34.095	50	310	2.6274	2.6261		
32 746	40	031	2.7325	2.3750	35 765	60	131	2.5084	2.5087		
33 774	65	221	2.6554	2.6574	37,221	30	040	2.4136	2.4134		
55.724	05	131	2.6059	2.6072	37,836	40	320	2.3758	2.3756		
34.385	100	040	,	2.6114	39,174	70	002	2.2976	2.2966		
35 925	60	140	2.4976	2.4994	39 474	15	311	2 2809	2 2798		
40 690	95	330	2.2155	2.2172	40 679	25	231	2 2160	2.2159		
40 780	100	002	2.2108	2.2098	42 808	5	321	2 1106	2 1100		
41 216	60	321	2.1884	2.1885	12.000	2	330	2.0802	2 0813		
41.210	60	141	2.1754	2.1756	43.466	25	240	2.0002	2.0015		
A7 778	10	410	2.1120	2.1122	43 742	10	141	2 0677	2.072		
42.170	10	022	2 0349	2.0351	44 711	5	400	2.0077	2.0072		
44.483	10	150	2.03 17	2.0304	45 055	35	122	2.0400	2.0400		
		241	1.9937	1.9937	46.247	10	212	1 9614	1 9611		
45.454	35	420	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.9935	-0.41	10	212	1 8933	1 8940		
		331	1.9817	1.9818	48.011	5	331	1.0755	1.8958		
45.745	25	122	11/01/	1.9807	48 666	20	401	1 8694	1 8695		
		340	1 9332	1 9332	49 225	5	222	1 8494	1.8500		
46 960	25	212	1.7552	1.9327	49.225	10	132	1 8226	1 8224		
-0.700		401		1 9383	47.770	10	421	1.7420	1 7433		
47 664	50	411	1 9063	1.9057	52.486	10	151	1.7420	1 7392		
48 367	35	250	1.8802	1.8802			312	1 7285	1 7288		
40.507		151	1 8432	1.8450	52.926	20	430	1.7205	1 7270		
49.404	5	272	110102	1.8405	54 494	10	341	1 6824	1 6822		
		421	1.8183	1.8172	55 168	25	042	1 6634	1.6637		
50.125	10	132	110105	1.8236	55 615	30	322	1.6511	1.6512		
51 554	2	341	1.7712	1.7712	55.015	20	251	1.6321	1.6322		
52 510	25	060	1.7412	1.7409	56.321	15	147	1.0521	1 6304		
52.510		251	1.7295	1.7302			160	1 5789	1.5787		
52.891	60	312		1.7280	58.398	5	350	1.57.67	1 5761		
		160	1.7074	1.7065			332	1.5419	1.5422		
53 631	5	232		1.7124	59.942	20	242	1.5 (1)	1 5413		
55.051	-	510		1.7023	60.576	5	402	1.5272	1.5280		
_		350	1.6914	1.6902							
54.181	10	431		1.6935							
54.307	15	042	1.6878	1.6864	(62) svr	nmetry	and all t	he atoms li	e on the		
	•••	142	1.6558	1.6555	mirror	nlanes »	ernendia	ular to the	short o		
55.443	30	322		1.6612			Dath 4	$\gamma_{1} = i_{0} = i_{0}$			
58.943	40	332	1.5656	1.5652	axis at	$z = \pm 2$					

axis at $z = \pm \frac{1}{4}$. Both Cl⁻ ions have four Pb⁺² ions as their nearest neighbors, and 1.5362 the Cl(2)-Cl(2) separation across the center of symmetry is 5.41 Å, slightly larger than the 5.17 Å noted for Cl(1)-Cl(1). The Pb⁺²

1.5564

1.5269

1.5164

FIG. 2. c-Axis projection of the PbCII structure.

ion is surrounded by nine Cl^- ions in a rather distorted, tricapped trigonal prismatic coordination. Six of the nine Pb-Cl distances are relatively short and the rest are very much longer. All the long Pb-Cl bonds cluster on the same side showing the effect of the lone-pair electrons of Pb⁺².

From Table III, it is apparent that the halogen atom framework for the three halides is very similar and exhibits minimal shifts. This is also true for PbBr₂ (16). Thus, in mixed halides, the larger I⁻ ions will preferentially enter the X(2) sites for which the X(2)-X(2) distances are larger.

FIG. 3. c-Axis projection of the PbBr $(Br_{0.17}I_{0.83})$ structure.

TABLE VI Interatomic Distance of Mixed Lead Halides in Å

	PbCII	PbBr _{1.17} I _{0.63}			
Pb-Cl	2.931(3) ×1	Pb–Br	2.980(2) ×1		
	$2.960(2) \times 2$		$3.128(1) \times 2$		
	5.550(4) × 1		3.391(2) × 1		
Pb–I	$3.381(1) \times 2$	Pb–I	$3.175(1) \times 2$		
	$3.356(1) \times 1$		$3.656(1) \times 2$		
	$3.527(1) \times 2$				

The substitution of I for Cl(2) leads to an expansion of the lattice in the *a* and *b* directions and a significant shift of Pb⁺² away from the X(2)-X(2) pair to maintain proper Pb-Cl distances. The disparity of the two halide sites is much greater in PbCII so that the smaller Cl⁻ ion, with lower polarizability, is stable in the X(2) sites. Also, the X(1) site cannot accommodate the larger I⁻ ion. Thus, there is complete ordering of Cl and I in the PbCII structure with little solubility on either side of this composition.

Similar structural changes are also observed in $PbBr(Br_{0.17}I_{0.83})$. The shift of the Pb⁺² ion has no effective contact with the capping I⁻ ion, which is 4.5 Å away. The Pb⁺² ion is, therefore, only 8-coordinated. The shift also leads to a pair of very short Pb-I bonds. This short Pb-I distance, resulting from the inclusion of 17% Br⁻ ions in these sites, indicates the softness of the I⁻ ion due to its high polarizability. Mixing of some Br^- ions with I^- ions at the X(2)sites is possible since the size difference for the halides is much smaller than in the case of PbClI. However, I⁻ ions do not occupy X(1) sites and the two halide sites remain strictly ordered. The similarity between the Br⁻ and I⁻ ions does allow some solubility of PbI₂ in PbBr₂. From the powder data, it appears that the solubility limit is about 15-20%, and the variation of the lattice parameters indicates that I^- can enter either Br(1) or Br(2) sites. A solubility range apparently exists around PbBr(Br_{0.17}I_{0.83}), as evidenced from the small variation of lattice parameters. However, the solubility range is very narrow, probably less than 5%.

One interesting aspect of these dihalide systems is the variation of the c dimension of the unit cells. While the a and b dimensions increase monotonically with the increase in the effective sizes of the halide ion, the c dimension increases in the region of PbX_2 and then decreases abruptly in the mixed halides. Since all atoms lie in the mirror planes perpendicular to the c axis, the shortening of the c axis brings the layers closer together. In this manner, the proper Pb-Cl and Pb-Br distances are maintained. Atoms which spread out within the layers cause the cell to expand. In PbBr(Br_{0.17}I_{0.85}), the c dimension is 4.427 Å, which is very close to the van der Waals diameter of 4.30 Å for iodine. Any further expansion of a and b by increasing the jodine content without a drastic structural change would bring the I⁻ ions too close together. Such a situation develops before the 1:1 composition PbBrI is reached and, therefore, this composition does not exist.

Acknowledgments

The technical assistance of Mr. J. W. Rooney in sample preparation, and the assistance of Mr. G. Hyatt in obtaining the Guinier data is gratefully acknowledged.

References

- G. P. M. VAN DEN HEUVEL AND G. BLASSE, Phys. Status Solidi 44, K168 (1971).
- 2. H. FESEFELDT, Z. Phys. 64, 741 (1930).
- 3. J. BORDAS, J. ROBERTSON, AND A. JAKOBSSON, J. Phys. C 11, 2607 (1978).
- 4. H. HIRSCH, J. Inorg. Nucl. Chem. 40, 1623 (1978).
- 5. K. HEIDRICH, D. LINDENBERG, P. MAUERS-BERGER, AND G. TRENDEL, Z. Phys. Chem. (Wiesbaden) 119(2), 205 (1980).
- 6. L. BRÄKKEN, Z. Kristallogr. 83, 222 (1932).
- 7. R. S. MITCHELL, Z. Kristallogr. 111, 372 (1959).
- 8. F. A. BANNISTER, Mineral Mag. 23, 587 (1934).

- L. H. BRIXNER, J. D. BIERLEIN, AND V. JOHN-SON. "Current Topics in Materials Science," Vol. 4, p. 77. North-Holland, Amsterdam (1980).
- 10. W. NIEVWENKAMP AND J. M. BUVOET, Z. Kristallogr. 32, 157 (1932).
- 11. G. DENES, J. PANNETIER, AND J. LUCAS, C.R. Acad. Sci. Paris Ser. C 280, 831 (1975).
- 12a. G. S. SMITH AND R. L. SNYDER, J. Appl. Crystallogr. 12, 60 (1979).
- 12b. P. M. DE WOLFF, J. Appl. Crystallogr. 1, 108 (1968).

- 13. S. K. PERRY AND T. T. KURTZ, J. Appl. Phys. 39, 3798 (1968).
- 14. B. A. FRENZ, "Computing in Crystallography" (H. Schenk, R. Olthof-Hazechamp, H. van Koningsveld, and G. C. Gassi, Eds.), pp. 64-71. Delft Univ. Press, Delft (1978).
- 15. P. W. R. CORFIELD, R. J. DOEDENS, AND J. A. IBERS, Inorg. Chem. 6, 197-204 (1967).
- R. W. G. WYCKOFF, "Crystal Structure." Interscience, New York (1965).